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SSL – Secure Socket Layer / TLS – Transport Layer Security

SSL

I encrypts data

I protects against Man-in-the-middle attacks

I uses certificates to verify the identity of communication peer

Certificates

I peer identity verification

I spoofing protection

I automatically retrieved from peer on connection setup

I certificates are signed – a system of ‘Certificate Authorities’

Using SSL
I Explicit SSL

I by using special protocol, such as HTTPS
I by using appropriate functions from the SSL library

I Implicit SSL
I by using tlswrap
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SSL – Secure Socket Layer / TLS – Transport Layer Security

Two basic reasons to use
SSL/TLS:

I two-way
authentication

I securing the
communication
channel which can
be used by higher
layers protocols
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SSL – Secure Socket Layer / TLS – Transport Layer Security

SSL/TLS – Development history

I In early 1990s IETF chartered a Web Transaction Security (WTS) WG
I This resulted in an application layer protocol named Secure Hypertext Transfer

Protocol (S-HTTP), described in experimental RFCs 2659 and 2660
I Independently, Netscape Communications proposed (and patented) a transport

layer security protocol named Secure Sockets Layer (SSL)
I SSL is placed on top of a connection oriented and reliable transport layer (TCP or

similar)
I Netscape Communications implemented SSL 2.0 in its Netscape Navigator

browser in 1994
I Microsoft proposed a similar concept as Private Communication Technology

(PCT) and an enhanced Secure Transport Layer Protocol (STLP) in 1995
I In 1996 SSL 3.0 was specified (currently: RFC 6101)
I Transport Layer Security (TLS) WG has been created by IETF in 1999 (RFC

2246) to resolve dispute between Netscape Communications (SSL) and Microsoft
(PCT/STLP)

I Further development focused on TLS, resulting in TLS 1.1 (RFC 4346) release in
April 2006, as well as Datagram TLS (DTLS) protocol 1.0 (RFC 4347)

I TLS 1.2 has been released in August 2008 (RFC 5246)
I TLS 1.3 has been released in August 2018 (RFC 8446) , removal of MD5 and

SHA-224 among other features
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SSL/TLS caveats
I SSL/TLS is supposed to achieve point-to-point secure communication
I SSL/TLS is not a complete and universal security platform
I do not solve problems such as:

I SQL injection
I Cross-site scripting (XSS)
I Cross-site request forgery (CSRF)

I Using SSL/TLS may impose problems with implementing security policy (content
screening) and may require installing a SSL/TLS proxy

MITM attacks
I in theory – protection against ,,Man in the Middle” attacks
I in practice – problems with certificate control and theauthentication chain

SSL/TLS implementation problems

I Misinterpretations of certificate verification error codes (recent: Polish
local elections Nov 2014)

I (8.04.2014) – Heartbleed attack (OpenSSL 1.0.1–1.0.1e – buffer overread)

I (10.2014) – ‘poodle attack’ (‘Padding Oracle On Downgraded Legacy
Encryption’) on SSL 3.0 – drawbacks of mainaining interoperability
between different systems)

I (15.03.2022) – ‘Infinite loop reachable when parsing certificates’
(CVE-2022-0778)
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Definitions and standards

I ANI X.509 – certificates

I RFC 2246 – TLS

I RFC 2487 – SMTP over TLS

I RFC 2818 – HTTPS (https://..., port 443)

I RFC 4346 – TLS 1.1

I RFC 5246 – TLS 1.2

I RFC 8446 – TLS 1.3

Using SSL/TLS

I OpenSSL (http://www.openssl.org/)

I Apache SSL (http://www.apache-ssl.org/)

I mod ssl (http://www.modssl.org/)
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SSL – Configuration

I Verification of the SSL version and available encryption methods

linux% openssl version -a
OpenSSL 0.9.8o 01 Jun 2010
platform: debian -amd64
options: bn(64 ,64) md2(int) rc4(ptr ,char) des(idx ,cisc ,16,int) blowfish(ptr2)
...
linux% openssl ciphers -v
DHE -RSA -AES256 -SHA SSLv3 Kx=DH Au=RSA Enc=AES (256) Mac=SHA1
DHE -DSS -AES256 -SHA SSLv3 Kx=DH Au=DSS Enc=AES (256) Mac=SHA1
AES256 -SHA SSLv3 Kx=RSA Au=RSA Enc=AES (256) Mac=SHA1
DES -CBC3 -SHA SSLv3 Kx=RSA Au=RSA Enc=3DES (168) Mac=SHA1
DES -CBC3 -MD5 SSLv2 Kx=RSA Au=RSA Enc=3DES (168) Mac=MD5
AES128 -SHA SSLv3 Kx=RSA Au=RSA Enc=AES (128) Mac=SHA1
...

I Verifying where SSL keeps its files: openssl version -d (usually /usr/lib/ssl)
I openssl.conf – CA configuration, certificate directories, default value
I cert.pem – set of known certificates (Comodo, DigiCert, DigiNotar, Thawte,

TERENA)
I certs subdirectory – individual .pem files with CA certificates
I symlinks in certs directories to certificate files. Symlink names – cert hashes
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SSL/TLS – Certificates

I Certificate Name – the name that will identify the newly created certificate.

I Expiry Date – allows controlling the time period for which this certificate can be
used.

I Common Name – This represents the ’issued to’ identifier for the certificate.
Because the certificate will be self signed, this will also be the ’issued by’ identifier.

I Email Address – the email address that any queries or other contact related to the
certificate should be directed to.

I Organisation – the name of the organisation that the certificate is intended for.

I Department – the department that the certificate is intended for within an
organisation.

I City / Town – the city or town where this organisation is based.

I State / Province – the state or province where the organisation using the
certificate is based.

I Country – the country where the organisation using the certificate is based.

I Private Key Length – the size of the private key that will be used with the
certificate. A 2048-bit key will provide stronger security than a 1024-bit key.
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SSL/TLS – Certificates

I Certificate creation

openssl req -x509 -nodes -days 365 -newkey rsa :1024 -keyout mycert.pem -out
mycert.pem

I Most questions do not need explanation (Country Name, State, City, itd.)
I ,,Common Name” – DNS name of the serveror its CNAME
I Certificate creation can be automated thanks to -subj option:

openssl req -x509 -nodes -days 365 -newkey rsa :1024 \
-keyout mycert.pem -out mycert.pem \
-subj ’/C=PL/ST=Dolnoslaskie/L=Wroclaw/CN=www.jakasfirma.pl’

I Minimalistic certificate must contain the CN field, the rest is optional.
I Using the -subj option:

I /C=PL – country, /ST=Dolnoslaskie – state, voivodship, region, etc.
I /O=Wroclaw University of Technology – organization
I /OU=Electronics Dept – organizational unit, department, etc.
I /CN=www.pwr.wroc.pl – common name – DNS name
I /emailAddress=Some.Address@pwr.wroc.pl – contact person’s email address

I Checking the certificate:
linux% openssl verify mycert.pem
mycert.pem: /C=PL/ST=Dln/L=Wroclaw/O=PWr/OU=Electronics/CN=www.pwr.wroc.pl/emailAddress=Some.Address@pwr.wroc.pl
error 18 at 0 depth lookup:self signed certificate
OK
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SSL/TLS – certificate signing
Ê Certificate creation means generating ,,certificate signing request”

openssl req -new -key privkey.pem -out cert.csr

J Checking the contents of this request:

openssl req -in cert.csr -noout -text

Ë Such a ,certificate reqest” (plik cert.csr) may be sent to the CA for signing or one
can sign it oneself (especially when having someone’s own CA)

# Individual CA in demoCA subdir (demoCA/cacert.pem , demoCA/private/cakey.pem)
openssl ca -policy policy_anything -out newcert2.pem -infiles newreq.pem

Ê Creation of a self-signed certificate:

openssl genrsa -des3 -out privkey.pem 2048
openssl req -new -x509 -key privkey.pem -out cacert.pem -days 1095

I First command generates the key, the second one - the certificate.
I The -des3 option locks cert with a password (otherwise – a paswordless certificate)
I If the password-protected certificate is to be used by the WWW server, it will be

necessary to manually unlock the certificate each time the server is restarted.

J Verification:

openssl x509 -text -in cacert.pem

I Selective checking: – with -issuer, -subject, -dates, -hash, -fingerprint
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SSL/TLS – Individual CA

I To create one’s own CA it is best to use CA.pl or CA.sh scripts (located in
/usr/lib/ssl/misc/ directory by default)

I The default /usr/lib/ssl/openssl.cnf file points to ./demoCA directory– CA
certificates, database of singed certificates and other files.

I A different config may be used by setting OPENSSL CONF environment variable.

Basic usage:

I CA -newca – Creation of a new CA
I CA -newreq [-nodes] – New certificate request (unsigned certificate)
I CA -sign – certificate signing

Signs cert request file newreq.pem and stores the signed result in newcert.pem

Newly signed certificate is also placed in the CA’s database (demoCA/newcerts/
directory)

I Error message ,,failed to update database” means, that the certificate being
signed is already in the database (it can be removed by openssl ca -revoke
xyz.crt)

I Default values (e.g. countryName default=AU) used by CA and when creating
new cert signing requests may be modified in /usr/lib/ssl/openssl.cnf file.
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Certificates – samples

I Creating cert-request, signing it by CA:

% openssl req -new -key privkey.pem -out new4.csr
% openssl ca -policy policy_anything -out newcert4.pem -infiles new4.csr

Using configuration from /usr/lib/ssl/openssl.cnf
Enter pass phrase for ./demoCA/private/cakey.pem:
Check that the request matches the signature
Signature ok
Certificate Details:

Serial Number: 10527901524476118302 (0x921a9ea844b1451e)
Validity Not Before: Nov 30 12:50:35 2016 GMT, Not After: Nov 30 12:50:35 2017 GMT
Subject:

countryName = PL organizationName = ccc
stateOrProvinceName = aaa organizationalUnitName = ddd
localityName = bbb commonName = eee

X509v3 extensions:
X509v3 Basic Constraints:

CA:FALSE
X509v3 Subject Key Identifier:

E0:66:B6:4A:19:7C:88:52:ED:7C:1B:6E:A5:40:86:0C:74:DA:71:B0
X509v3 Authority Key Identifier:

keyid:F2:31:E2:3D:1A:38:F9:E9:34:A2:E8:E1:FB:67:33:33:ED:FF:B3:AE
Certificate is to be certified until Nov 30 12:50:35 2017 GMT (365 days)
Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated
% a signed certificate also goes to the database:
% -rw-r--r-- 1 ts ts 3378 2011-11-01 19:32 A7AAD5EE0ECE77CE.pem
% -rw-r--r-- 1 ts ts 3876 2011-11-01 21:36 A7AAD5EE0ECE77D0.pem <--
% -rw-rw-r-- 1 ts ts 4536 lis 30 12:34 921A9EA844B1451D.pem
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Certificates – samples

I Verification of a signed certificate:

demoCA% openssl x509 -text -in newcerts/A7AAD5EE0ECE77D0.pem
Certificate:

Data: Version: 3 (0x2)
Serial Number: a7:aa:d5:ee:0e:ce:77:d0
Signature Algorithm: sha1WithRSAEncryption
Issuer: C=PL, ST=Dolnoslaskie, O=Demo CA org, CN=laptok CA/emailAddress=laptok@laptok
Validity: Not Before: Nov 1 20:36:03 2011 GMT, Not After : Oct 31 20:36:03 2012 GMT
Subject: C=PL, ST=aaa, L=bbb, O=ccc, OU=ddd, CN=eee
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
RSA Public Key: (2048 bit)

Modulus (2048 bit):
00:d4:be:ee:2a:ef:df:e7:4a:aa:9b:0d:65:7b:f7:

...
2d:28:ae:ad:7e:08:b0:70:a6:28:7d:8c:e5:3f:ac:15:5d

Exponent: 65537 (0x10001)
X509v3 extensions:

X509v3 Basic Constraints: CA:FALSE
X509v3 Subject Key Identifier: CA:B1:FD:89:DD:04:5F:A0:E3:9E:C7:50:3A:01:88:1F:8F:9E:8F:E9
X509v3 Authority Key Identifier: keyid:BC:7D:A2:9B:2D:FA:F9:51:6E:73:82:2B:30:02:EC:E3:33:2A:D7:40

Signature Algorithm: sha1WithRSAEncryption
a8:ea:f2:52:ea:83:45:44:0b:06:6b:9d:30:6e:ae:2c:7b:be:
...
03:98:74:0f:90:d5:43:08:93:c6:b6:09:b4:ad:9c:08:d5:aa:cb:6c

-----BEGIN CERTIFICATE-----
MIIDPDCCAqWgAwIBAgIJAKeq1e4OznfQMA0GCSqGSIb3DQEBBQUAMGwxCzAJBgNV
...
nEzxzqMbRtwVhbl5IhEo2tK8fwSpm6iiI1zWbO+euHBJyFpOJaL9jjLMJ1gDmHQP
kNVDCJPGtgm0rZwI1arLbA==
-----END CERTIFICATE-----
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SSL/TLS – Using certificates

In the Apache server:
I /etc/apache/mod ssl.conf config file:

SSLCertificateKeyFile /etc/apache/ssl.key/server.key
SSLCertificateFile /etc/apache/ssl.crt/server.crt

These 2 files should contain the previously generated key and the signed
certificate (.pem files).

I If the key is locked with an additional password, each server startup will require
manual password unlocking.

I Unlocking the key and storing a password-free version:

openssl rsa < server.key > unencrypted.key

From the client side (remote access to the SSL-enabled HTTP server and its
certificate):

I Fetching a certificate from the remote WWW server:

openssl s_client -connect ad.res.serwe.ra:443 | \
sed -ne ’/-BEGIN CERTIFICATE -/,/-END CERTIFICATE -/p’ > cert.pem

I Checking the certificate contents:

openssl x509 -noout -subject -dates -in cert.pem
openssl x509 -noout -text -in cert.pem
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SSL – Using client certificates

Client certificates:

I Client certificates are created the same way as server’s

I Must be signed by CA recognized by the server

I Authentication is based on signature verification and matching of signed client
data

I Authentication rules – in mod ssl module configuration

Using client cerificates

I Apache can force all the clients to authenticate using certificates.

I Some URLs may require clients to authenticate using certificates, while the rest of
the WWW server may be accessed by anymone.

I Access can be given based on user name in certiticate, or any other info (e.g. –
organization name) to provide group access

More info: (http://httpd.apache.org/docs/2.2/ssl/ssl howto.html.en#upgradeenc)
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SSL/TLS – client certificates

Client certificate is nothing else than a typical certificate generated for a user, signed
by CA and written in PKCS12 format:

Ê Key (user.key) and certificate (user.csr) creation means generating the ,,cert
signing requests”. This key will be password-protected (disable with -nodes)

openssl req -new -newkey rsa :1024 -keyout user.key -out user.csr

J Verification of request contents:

openssl req -in user.csr -noout -text

Ë Signing this request with CA’s certificate:

# Your own CA in demoCA/ (demoCA/cacert.pem , demoCA/private/cakey.pem)
openssl ca -policy policy_anything -out user.pem -infiles user.csr

Ì Merging the signed certificate (user.pem) with the key (user.key) into one file:

cat user.key user.pem > user2.pem

Í Exporting user certificate to a PKCS12 file:

openssl pkcs12 -export -out user.pfx -in user2.pem -name "User Cert"
Enter pass phrase for user2.pem: ******
Enter Export Password: ******
Verifying - Enter Export Password: ******
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I The user.pfx file holds user’s cert and key in PKCS12 format:

openssl pkcs12 -in user.pfx -nodes
Enter Import Password:
MAC verified OK

friendlyName: User Cert
localKeyID: 84 EB F1 51 33 40 55 62 08 EC 99 86 FC E5 68 70 77 87 59 E4

subject =/C=PL/ST=aaaa/L=BBBB/O=cccc/OU=DDDD/CN=User Name/emailAddress=user@here
issuer =/C=PL/ST=Dolnoslaskie/O=Demo CA org/CN=laptok CA/emailAddress=ts@laptok
-----BEGIN CERTIFICATE -----
MIIC3DCCAkWgAwIBAgIJAKeq1e4OznfRMA0GCSqGSIb3DQEBBQUAMGwxCzAJBgNV
...
Wo4MSI19bUnc3Fojovg8CQ ==
-----END CERTIFICATE -----
Bag Attributes

friendlyName: User Cert
localKeyID: 84 EB F1 51 33 40 55 62 08 EC 99 86 FC E5 68 70 77 87 59 E4

Key Attributes: <No Attributes >
-----BEGIN RSA PRIVATE KEY -----
Proc -Type: 4,ENCRYPTED
DEK -Info: DES -EDE3 -CBC ,971347 A4DFA8E807
Bo5YL9BPbiI7iIyppQNnXe3QJCpscKNVQFs3ZyHPlExvZZ+L55V6aIeD2IRF8hkq
...
-----END RSA PRIVATE KEY -----

I The user.pem file (step Ë) contains CA-signed user certificate:

Issuer: C=PL , ST=Dolnoslaskie , O=Demo CA org , CN=laptok CA/emailAddress=
laptok@laptok

Subject: C=PL, ST=aaaa , L=BBBB , O=cccc , OU=DDDD , CN=User Name/emailAddress=
user@here
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