
Secure Systems and Networks

INEA 00014 W

Tomasz Surmacz, PhD

6. SSL



Tomasz R. Surmacz – Secure Systems and Networks

SSL – Secure Socket Layer / TLS – Transport Layer Security

SSL

I encrypts data

I protects against Man-in-the-middle attacks

I uses certificates to verify the identity of communication peer

Certificates

I peer identity verification

I spoofing protection

I automatically retrieved from peer on connection setup

I certificates are signed – a system of ‘Certificate Authorities’

Using SSL
I Explicit SSL

I by using special protocol, such as HTTPS
I by using appropriate functions from the SSL library

I Implicit SSL
I by using tlswrap

October 2022, Wroclaw University of Science and Technology winter semester 6-1



Tomasz R. Surmacz – Secure Systems and Networks

SSL – Secure Socket Layer / TLS – Transport Layer Security

Two basic reasons to use
SSL/TLS:

I two-way
authentication

I securing the
communication
channel which can
be used by higher
layers protocols

Physical

Link

Network

Transport

Session

Presentation

Application

TCP UDP

IP

ARP
RARP

SNAP

LLC

SMB DNS DHCP SNMP
BOOTP
TFTP

FTP
Telnet
SMTP

RIP OSPF ICMP

Ethernet, Token Ring, PtP, ATM, ...
(c)2001 TS

(c)TS

SSL

NetBIOS

October 2022, Wroclaw University of Science and Technology winter semester 6-2



Tomasz R. Surmacz – Secure Systems and Networks

SSL – Secure Socket Layer / TLS – Transport Layer Security

SSL/TLS – Development history

I In early 1990s IETF chartered a Web Transaction Security (WTS) WG
I This resulted in an application layer protocol named Secure Hypertext Transfer

Protocol (S-HTTP), described in experimental RFCs 2659 and 2660
I Independently, Netscape Communications proposed (and patented) a transport

layer security protocol named Secure Sockets Layer (SSL)
I SSL is placed on top of a connection oriented and reliable transport layer (TCP or

similar)
I Netscape Communications implemented SSL 2.0 in its Netscape Navigator

browser in 1994
I Microsoft proposed a similar concept as Private Communication Technology

(PCT) and an enhanced Secure Transport Layer Protocol (STLP) in 1995
I In 1996 SSL 3.0 was specified (currently: RFC 6101)
I Transport Layer Security (TLS) WG has been created by IETF in 1999 (RFC

2246) to resolve dispute between Netscape Communications (SSL) and Microsoft
(PCT/STLP)

I Further development focused on TLS, resulting in TLS 1.1 (RFC 4346) release in
April 2006, as well as Datagram TLS (DTLS) protocol 1.0 (RFC 4347)

I TLS 1.2 has been released in August 2008 (RFC 5246)
I TLS 1.3 has been released in August 2018 (RFC 8446) , removal of MD5 and

SHA-224 among other features
October 2022, Wroclaw University of Science and Technology winter semester 6-3



Tomasz R. Surmacz – Secure Systems and Networks

SSL/TLS caveats
I SSL/TLS is supposed to achieve point-to-point secure communication
I SSL/TLS is not a complete and universal security platform
I do not solve problems such as:

I SQL injection
I Cross-site scripting (XSS)
I Cross-site request forgery (CSRF)

I Using SSL/TLS may impose problems with implementing security policy (content
screening) and may require installing a SSL/TLS proxy

MITM attacks
I in theory – protection against ,,Man in the Middle” attacks
I in practice – problems with certificate control and theauthentication chain

SSL/TLS implementation problems

I Misinterpretations of certificate verification error codes (recent: Polish
local elections Nov 2014)

I (8.04.2014) – Heartbleed attack (OpenSSL 1.0.1–1.0.1e – buffer overread)

I (10.2014) – ‘poodle attack’ (‘Padding Oracle On Downgraded Legacy
Encryption’) on SSL 3.0 – drawbacks of mainaining interoperability
between different systems)

I (15.03.2022) – ‘Infinite loop reachable when parsing certificates’
(CVE-2022-0778)

October 2022, Wroclaw University of Science and Technology winter semester 6-4



Tomasz R. Surmacz – Secure Systems and Networks

Definitions and standards

I ANI X.509 – certificates

I RFC 2246 – TLS

I RFC 2487 – SMTP over TLS

I RFC 2818 – HTTPS (https://..., port 443)

I RFC 4346 – TLS 1.1

I RFC 5246 – TLS 1.2

I RFC 8446 – TLS 1.3

Using SSL/TLS

I OpenSSL (http://www.openssl.org/)

I Apache SSL (http://www.apache-ssl.org/)

I mod ssl (http://www.modssl.org/)

October 2022, Wroclaw University of Science and Technology winter semester 6-5



Tomasz R. Surmacz – Secure Systems and Networks

SSL – Configuration

I Verification of the SSL version and available encryption methods

linux% openssl version -a
OpenSSL 0.9.8o 01 Jun 2010
platform: debian -amd64
options: bn(64 ,64) md2(int) rc4(ptr ,char) des(idx ,cisc ,16,int) blowfish(ptr2)
...
linux% openssl ciphers -v
DHE -RSA -AES256 -SHA SSLv3 Kx=DH Au=RSA Enc=AES (256) Mac=SHA1
DHE -DSS -AES256 -SHA SSLv3 Kx=DH Au=DSS Enc=AES (256) Mac=SHA1
AES256 -SHA SSLv3 Kx=RSA Au=RSA Enc=AES (256) Mac=SHA1
DES -CBC3 -SHA SSLv3 Kx=RSA Au=RSA Enc=3DES (168) Mac=SHA1
DES -CBC3 -MD5 SSLv2 Kx=RSA Au=RSA Enc=3DES (168) Mac=MD5
AES128 -SHA SSLv3 Kx=RSA Au=RSA Enc=AES (128) Mac=SHA1
...

I Verifying where SSL keeps its files: openssl version -d (usually /usr/lib/ssl)
I openssl.conf – CA configuration, certificate directories, default value
I cert.pem – set of known certificates (Comodo, DigiCert, DigiNotar, Thawte,

TERENA)
I certs subdirectory – individual .pem files with CA certificates
I symlinks in certs directories to certificate files. Symlink names – cert hashes

October 2022, Wroclaw University of Science and Technology winter semester 6-6



Tomasz R. Surmacz – Secure Systems and Networks

SSL/TLS – Certificates

I Certificate Name – the name that will identify the newly created certificate.

I Expiry Date – allows controlling the time period for which this certificate can be
used.

I Common Name – This represents the ’issued to’ identifier for the certificate.
Because the certificate will be self signed, this will also be the ’issued by’ identifier.

I Email Address – the email address that any queries or other contact related to the
certificate should be directed to.

I Organisation – the name of the organisation that the certificate is intended for.

I Department – the department that the certificate is intended for within an
organisation.

I City / Town – the city or town where this organisation is based.

I State / Province – the state or province where the organisation using the
certificate is based.

I Country – the country where the organisation using the certificate is based.

I Private Key Length – the size of the private key that will be used with the
certificate. A 2048-bit key will provide stronger security than a 1024-bit key.

October 2022, Wroclaw University of Science and Technology winter semester 6-7



Tomasz R. Surmacz – Secure Systems and Networks

SSL/TLS – Certificates

I Certificate creation

openssl req -x509 -nodes -days 365 -newkey rsa :1024 -keyout mycert.pem -out
mycert.pem

I Most questions do not need explanation (Country Name, State, City, itd.)
I ,,Common Name” – DNS name of the serveror its CNAME
I Certificate creation can be automated thanks to -subj option:

openssl req -x509 -nodes -days 365 -newkey rsa :1024 \
-keyout mycert.pem -out mycert.pem \
-subj ’/C=PL/ST=Dolnoslaskie/L=Wroclaw/CN=www.jakasfirma.pl’

I Minimalistic certificate must contain the CN field, the rest is optional.
I Using the -subj option:

I /C=PL – country, /ST=Dolnoslaskie – state, voivodship, region, etc.
I /O=Wroclaw University of Technology – organization
I /OU=Electronics Dept – organizational unit, department, etc.
I /CN=www.pwr.wroc.pl – common name – DNS name
I /emailAddress=Some.Address@pwr.wroc.pl – contact person’s email address

I Checking the certificate:
linux% openssl verify mycert.pem
mycert.pem: /C=PL/ST=Dln/L=Wroclaw/O=PWr/OU=Electronics/CN=www.pwr.wroc.pl/emailAddress=Some.Address@pwr.wroc.pl
error 18 at 0 depth lookup:self signed certificate
OK

October 2022, Wroclaw University of Science and Technology winter semester 6-8



Tomasz R. Surmacz – Secure Systems and Networks

SSL/TLS – certificate signing
Ê Certificate creation means generating ,,certificate signing request”

openssl req -new -key privkey.pem -out cert.csr

J Checking the contents of this request:

openssl req -in cert.csr -noout -text

Ë Such a ,certificate reqest” (plik cert.csr) may be sent to the CA for signing or one
can sign it oneself (especially when having someone’s own CA)

# Individual CA in demoCA subdir (demoCA/cacert.pem , demoCA/private/cakey.pem)
openssl ca -policy policy_anything -out newcert2.pem -infiles newreq.pem

Ê Creation of a self-signed certificate:

openssl genrsa -des3 -out privkey.pem 2048
openssl req -new -x509 -key privkey.pem -out cacert.pem -days 1095

I First command generates the key, the second one - the certificate.
I The -des3 option locks cert with a password (otherwise – a paswordless certificate)
I If the password-protected certificate is to be used by the WWW server, it will be

necessary to manually unlock the certificate each time the server is restarted.

J Verification:

openssl x509 -text -in cacert.pem

I Selective checking: – with -issuer, -subject, -dates, -hash, -fingerprint
October 2022, Wroclaw University of Science and Technology winter semester 6-9



Tomasz R. Surmacz – Secure Systems and Networks

SSL/TLS – Individual CA

I To create one’s own CA it is best to use CA.pl or CA.sh scripts (located in
/usr/lib/ssl/misc/ directory by default)

I The default /usr/lib/ssl/openssl.cnf file points to ./demoCA directory– CA
certificates, database of singed certificates and other files.

I A different config may be used by setting OPENSSL CONF environment variable.

Basic usage:

I CA -newca – Creation of a new CA
I CA -newreq [-nodes] – New certificate request (unsigned certificate)
I CA -sign – certificate signing

Signs cert request file newreq.pem and stores the signed result in newcert.pem

Newly signed certificate is also placed in the CA’s database (demoCA/newcerts/
directory)

I Error message ,,failed to update database” means, that the certificate being
signed is already in the database (it can be removed by openssl ca -revoke
xyz.crt)

I Default values (e.g. countryName default=AU) used by CA and when creating
new cert signing requests may be modified in /usr/lib/ssl/openssl.cnf file.

October 2022, Wroclaw University of Science and Technology winter semester 6-10



Tomasz R. Surmacz – Secure Systems and Networks

Certificates – samples

I Creating cert-request, signing it by CA:

% openssl req -new -key privkey.pem -out new4.csr
% openssl ca -policy policy_anything -out newcert4.pem -infiles new4.csr

Using configuration from /usr/lib/ssl/openssl.cnf
Enter pass phrase for ./demoCA/private/cakey.pem:
Check that the request matches the signature
Signature ok
Certificate Details:

Serial Number: 10527901524476118302 (0x921a9ea844b1451e)
Validity Not Before: Nov 30 12:50:35 2016 GMT, Not After: Nov 30 12:50:35 2017 GMT
Subject:

countryName = PL organizationName = ccc
stateOrProvinceName = aaa organizationalUnitName = ddd
localityName = bbb commonName = eee

X509v3 extensions:
X509v3 Basic Constraints:

CA:FALSE
X509v3 Subject Key Identifier:

E0:66:B6:4A:19:7C:88:52:ED:7C:1B:6E:A5:40:86:0C:74:DA:71:B0
X509v3 Authority Key Identifier:

keyid:F2:31:E2:3D:1A:38:F9:E9:34:A2:E8:E1:FB:67:33:33:ED:FF:B3:AE
Certificate is to be certified until Nov 30 12:50:35 2017 GMT (365 days)
Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated
% a signed certificate also goes to the database:
% -rw-r--r-- 1 ts ts 3378 2011-11-01 19:32 A7AAD5EE0ECE77CE.pem
% -rw-r--r-- 1 ts ts 3876 2011-11-01 21:36 A7AAD5EE0ECE77D0.pem <--
% -rw-rw-r-- 1 ts ts 4536 lis 30 12:34 921A9EA844B1451D.pem

October 2022, Wroclaw University of Science and Technology winter semester 6-11



Tomasz R. Surmacz – Secure Systems and Networks

Certificates – samples

I Verification of a signed certificate:

demoCA% openssl x509 -text -in newcerts/A7AAD5EE0ECE77D0.pem
Certificate:

Data: Version: 3 (0x2)
Serial Number: a7:aa:d5:ee:0e:ce:77:d0
Signature Algorithm: sha1WithRSAEncryption
Issuer: C=PL, ST=Dolnoslaskie, O=Demo CA org, CN=laptok CA/emailAddress=laptok@laptok
Validity: Not Before: Nov 1 20:36:03 2011 GMT, Not After : Oct 31 20:36:03 2012 GMT
Subject: C=PL, ST=aaa, L=bbb, O=ccc, OU=ddd, CN=eee
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
RSA Public Key: (2048 bit)

Modulus (2048 bit):
00:d4:be:ee:2a:ef:df:e7:4a:aa:9b:0d:65:7b:f7:

...
2d:28:ae:ad:7e:08:b0:70:a6:28:7d:8c:e5:3f:ac:15:5d

Exponent: 65537 (0x10001)
X509v3 extensions:

X509v3 Basic Constraints: CA:FALSE
X509v3 Subject Key Identifier: CA:B1:FD:89:DD:04:5F:A0:E3:9E:C7:50:3A:01:88:1F:8F:9E:8F:E9
X509v3 Authority Key Identifier: keyid:BC:7D:A2:9B:2D:FA:F9:51:6E:73:82:2B:30:02:EC:E3:33:2A:D7:40

Signature Algorithm: sha1WithRSAEncryption
a8:ea:f2:52:ea:83:45:44:0b:06:6b:9d:30:6e:ae:2c:7b:be:
...
03:98:74:0f:90:d5:43:08:93:c6:b6:09:b4:ad:9c:08:d5:aa:cb:6c

-----BEGIN CERTIFICATE-----
MIIDPDCCAqWgAwIBAgIJAKeq1e4OznfQMA0GCSqGSIb3DQEBBQUAMGwxCzAJBgNV
...
nEzxzqMbRtwVhbl5IhEo2tK8fwSpm6iiI1zWbO+euHBJyFpOJaL9jjLMJ1gDmHQP
kNVDCJPGtgm0rZwI1arLbA==
-----END CERTIFICATE-----

October 2022, Wroclaw University of Science and Technology winter semester 6-12



Tomasz R. Surmacz – Secure Systems and Networks

SSL/TLS – Using certificates

In the Apache server:
I /etc/apache/mod ssl.conf config file:

SSLCertificateKeyFile /etc/apache/ssl.key/server.key
SSLCertificateFile /etc/apache/ssl.crt/server.crt

These 2 files should contain the previously generated key and the signed
certificate (.pem files).

I If the key is locked with an additional password, each server startup will require
manual password unlocking.

I Unlocking the key and storing a password-free version:

openssl rsa < server.key > unencrypted.key

From the client side (remote access to the SSL-enabled HTTP server and its
certificate):

I Fetching a certificate from the remote WWW server:

openssl s_client -connect ad.res.serwe.ra:443 | \
sed -ne ’/-BEGIN CERTIFICATE -/,/-END CERTIFICATE -/p’ > cert.pem

I Checking the certificate contents:

openssl x509 -noout -subject -dates -in cert.pem
openssl x509 -noout -text -in cert.pem

October 2022, Wroclaw University of Science and Technology winter semester 6-13



Tomasz R. Surmacz – Secure Systems and Networks

SSL – Using client certificates

Client certificates:

I Client certificates are created the same way as server’s

I Must be signed by CA recognized by the server

I Authentication is based on signature verification and matching of signed client
data

I Authentication rules – in mod ssl module configuration

Using client cerificates

I Apache can force all the clients to authenticate using certificates.

I Some URLs may require clients to authenticate using certificates, while the rest of
the WWW server may be accessed by anymone.

I Access can be given based on user name in certiticate, or any other info (e.g. –
organization name) to provide group access

More info: (http://httpd.apache.org/docs/2.2/ssl/ssl howto.html.en#upgradeenc)

October 2022, Wroclaw University of Science and Technology winter semester 6-14



Tomasz R. Surmacz – Secure Systems and Networks

SSL/TLS – client certificates

Client certificate is nothing else than a typical certificate generated for a user, signed
by CA and written in PKCS12 format:

Ê Key (user.key) and certificate (user.csr) creation means generating the ,,cert
signing requests”. This key will be password-protected (disable with -nodes)

openssl req -new -newkey rsa :1024 -keyout user.key -out user.csr

J Verification of request contents:

openssl req -in user.csr -noout -text

Ë Signing this request with CA’s certificate:

# Your own CA in demoCA/ (demoCA/cacert.pem , demoCA/private/cakey.pem)
openssl ca -policy policy_anything -out user.pem -infiles user.csr

Ì Merging the signed certificate (user.pem) with the key (user.key) into one file:

cat user.key user.pem > user2.pem

Í Exporting user certificate to a PKCS12 file:

openssl pkcs12 -export -out user.pfx -in user2.pem -name "User Cert"
Enter pass phrase for user2.pem: ******
Enter Export Password: ******
Verifying - Enter Export Password: ******

October 2022, Wroclaw University of Science and Technology winter semester 6-15



Tomasz R. Surmacz – Secure Systems and Networks

I The user.pfx file holds user’s cert and key in PKCS12 format:

openssl pkcs12 -in user.pfx -nodes
Enter Import Password:
MAC verified OK

friendlyName: User Cert
localKeyID: 84 EB F1 51 33 40 55 62 08 EC 99 86 FC E5 68 70 77 87 59 E4

subject =/C=PL/ST=aaaa/L=BBBB/O=cccc/OU=DDDD/CN=User Name/emailAddress=user@here
issuer =/C=PL/ST=Dolnoslaskie/O=Demo CA org/CN=laptok CA/emailAddress=ts@laptok
-----BEGIN CERTIFICATE -----
MIIC3DCCAkWgAwIBAgIJAKeq1e4OznfRMA0GCSqGSIb3DQEBBQUAMGwxCzAJBgNV
...
Wo4MSI19bUnc3Fojovg8CQ ==
-----END CERTIFICATE -----
Bag Attributes

friendlyName: User Cert
localKeyID: 84 EB F1 51 33 40 55 62 08 EC 99 86 FC E5 68 70 77 87 59 E4

Key Attributes: <No Attributes >
-----BEGIN RSA PRIVATE KEY -----
Proc -Type: 4,ENCRYPTED
DEK -Info: DES -EDE3 -CBC ,971347 A4DFA8E807
Bo5YL9BPbiI7iIyppQNnXe3QJCpscKNVQFs3ZyHPlExvZZ+L55V6aIeD2IRF8hkq
...
-----END RSA PRIVATE KEY -----

I The user.pem file (step Ë) contains CA-signed user certificate:

Issuer: C=PL , ST=Dolnoslaskie , O=Demo CA org , CN=laptok CA/emailAddress=
laptok@laptok

Subject: C=PL, ST=aaaa , L=BBBB , O=cccc , OU=DDDD , CN=User Name/emailAddress=
user@here

October 2022, Wroclaw University of Science and Technology winter semester 6-16


